The Bayesian Network based program dependence graph and its application to fault localization
نویسندگان
چکیده
Fault localization is an important and expensive task in software debugging. Some probabilistic graphical models such as probabilistic program dependence graph (PPDG) have been used in fault localization. However, PPDG is insufficient to reason across nonadjacent nodes and only support making inference about local anomaly. In this paper, we propose a novel probabilistic graphical model called Bayesian Network based Program Dependence Graph (BNPDG) that has the excellent inference capability for reasoning across nonadjacent nodes. We focus on applying the BNPDG to fault localization. Compared with the PPDG, our BNPDG-based fault localization approach overcomes the reasoning limitation across nonadjacent nodes and provides more precise fault localization by taking its output nodes as the common conditions to calculate the conditional probability of each non-output node. The experimental results show that our BNPDG-based fault localization approach can significantly improve the effectiveness of fault localization. Keywords—Fault localization; Bayesian Network; Program Analysis
منابع مشابه
Fault Localization for Java Programs using Probabilistic Program Dependence Graph
Fault localization is a process to find the location of faults. It determines the root cause of the failure. It identifies the causes of abnormal behaviour of a faulty program. It identifies exactly where the bugs are. Existing fault localization techniques are Slice based technique, ProgramSpectrum based Technique, Statistics Based Technique, Program State Based Technique, Machine learning bas...
متن کاملResearch on Safety Risk of Dangerous Chemicals Road Transportation Based on Dynamic Fault Tree and Bayesian Network Hybrid Method (TECHNICAL NOTE)
Safety risk study on road transportation of hazardous chemicals is a reliable basis for the government to formulate transportation planning and preparing emergent schemes, but also is an important reference for safety risk managers to carry out dangerous chemicals safety risk managers. Based on the analysis of the transport safety risk of dangerous chemicals at home and abroad, this paper studi...
متن کاملDynamic Safety Analysis CNG Stations Using Fault Tree Approach and Bayesian Network
Introduction: The safety of CNG stations is important because of their location in urban areas, as well as to prevent accidents and to protect the safety of personnel, property, and environment. An event occurrence analysis with probability updating is the key to dynamic safety analysis. Methods and materials: In this study, the Failure Modes and Effects Analysis (FMEA) technique was used to d...
متن کاملAn Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling
In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...
متن کاملکاربرد تئوری گرف در مطالعات اکولوژی سیمای سرزمین نمونه موردی: سنجش پیوستگی زیستگاههای کلانشهر ملبورن
A new method to quantify, monitore and assess ecological structures and functions is the application of graph theory. In ecology, this theory demonstrates its suitable application in assessment of ecological connectivity. Connectivity is the structural attribute of landscape which facilitates the species movement among their habitats. Using graph theory, this paper aims to assess the connectivi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Systems and Software
دوره 134 شماره
صفحات -
تاریخ انتشار 2017